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Data on long-term circulation of pathogens in wildlife populations are seldom

collected, and hence understanding of spatial–temporal variation in preva-

lence and genotypes is limited. Here, we analysed a long-term surveillance

series on influenza A virus (IAV) in mallards collected at an important

migratory stopover site from 2002 to 2010, and characterized seasonal

dynamics in virus prevalence and subtype diversity. Prevalence dynamics

were influenced by year, but retained a common pattern for all years whereby

prevalence was low in spring and summer, but increased in early autumn

with a first peak in August, and a second more pronounced peak during

October–November. A total of 74 haemagglutinin (HA)/neuraminidase

(NA) combinations were isolated, including all NA and most HA (H1–H12)

subtypes. The most common subtype combinations were H4N6, H1N1,

H2N3, H5N2, H6N2 and H11N9, and showed a clear linkage between specific

HA and NA subtypes. Furthermore, there was a temporal structuring of

subtypes within seasons based on HA phylogenetic relatedness. Dissimilar

HA subtypes tended to have different temporal occurrence within seasons,

where the subtypes that dominated in early autumn were rare in late

autumn, and vice versa. This suggests that build-up of herd immunity affected

IAV dynamics in this system.
1. Introduction
Influenza A viruses (IAV) infect a range of animal species, including humans,

bats, swine, horses and seals [1]. However, most virus subtypes and the largest

genetic variation are found in wild birds [1]. Birds associated with wetlands,

such as waterfowl (Anseriformes), and shorebirds and gulls (Charadriiformes),

are more commonly infected, while terrestrial birds, such as songbirds are

seldom infected [1,2]. The vast majority of IAVs that circulate among wild birds

cause mild infections in their natural hosts, and are termed low-pathogenic

avian influenza (LPAI). However, these viruses may spill over to other species,

including our domestic animals, where they can evolve increased pathogen-

icity, including highly pathogenic avian influenza (HPAI) or fowl plague in

poultry [3], and pandemic influenza in humans [1]. The classification of IAVs

is based on two antigenically important surface proteins, haemagglutinin

(HA) and neuraminidase (NA). Currently, 16 HA and 9 NA protein variants

have been detected in birds [4]. The IAV genome is segmented, and the eight

RNA segments can be exchanged between co-infecting viruses in a process

called reassortment, creating a potential 144 different HA/NA subtype
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combinations to occur [4]. A current challenge is to under-

stand the spatial and temporal dynamics of the different

subtypes and their maintenance in natural hosts.

The importance of waterfowl and shorebirds as hosts for

LPAI viruses was recognized in the late 1960s [5], when the

first IAV isolations and serological studies were carried out

in wild birds. In waterfowl, especially in dabbling ducks of

the genus Anas, nearly all HA and all NA variants have

now been detected [2,6]. A striking property of IAV ecology

is the immense variation at the subtype level in Anas hosts,

where large-scale screening studies report large subtype

diversity both within and between seasons [7–16].

Long-term studies of IAV in wild bird populations are rare,

and most studies have either been of short duration, sampled

several locations but with relatively few samples from each

site, or had high effort at only a single time point. However,

there seem to be repeatable seasonal patterns of occurrence of

IAV across the Northern Hemisphere, with similar peaks in

prevalence in North America, Europe and Asia [7,9,10,13].

Temporal prevalence patterns correspond with immuno-

logical status and breeding phenology of ducks; specifically,

when a large proportion of immunologically naive hatch-

year individuals are recruited to the population there is a

peak of IAV. Consequently, IAV prevalence in ducks increases

at premigratory gatherings during the autumn migration, and

subsequently drops during winter once most individuals have

experienced infections and developed an immune response

[9,10,17]. Given the great antigenic subtype diversity and

the large spatial–temporal variations commonly detected in

IAV studies, longer time series conducted in a standardized

way are needed to address epidemiological questions with

higher accuracy.

In the present study we used data from a 9 year study of

IAV occurrence in a migratory population of mallard ducks,

Anas platyrhynchos, at a stopover site in southern Sweden to

investigate long-term patterns in IAV prevalence and subtype

variation. This study system has generated a number of

targeted studies [4,9,10,18–20], which have advanced the

understanding of LPAI and host–pathogen interactions.

Here, we investigate central questions of LPAI epidemiology

and use our long-term dataset consisting of more than 22 000

samples to characterize some fundamental epidemiological

factors. Specifically, the aims of the study were to analyse

the dynamics of IAV prevalence and diversity, and how

these are related to seasonal variation in host biology and

phenology of migration.
2. Material and methods
(a) Sample collection
The study site is situated at the southern-most point of the island

Öland in the Baltic Sea, in southeast Sweden (56o120 N 16o240 E).

At this site, a funnel live-duck trap operated by staff at the

Ottenby Bird Observatory was used to trap and sample water-

fowl. The time series started on 29 September 2002, and

samples collected until 30 November 2010 were included in

this study. Additionally, daily visual counts of birds staying in

the Ottenby Nature Reserve were performed in 2009. The

sampling protocol was approved by Linköping Animal Research

Ethics Board (permit numbers 8-06, 34-06, 80-07, 111-11, 112-11).

The field season started in spring each year following ice melt

(March–April) and continued until mid-December when the ice

returned. Two different sampling methodologies were used:
fresh faeces or cloacal swabs. The ducks were placed in single-

use cardboard boxes, and if the duck defecated in the box,

faecal material was collected with a sterile cotton-tipped applica-

tor [9,21]. The time in the box varied for each individual

depending on the number of trapped and handled birds on a

given day, with a range from a few minutes up to 3 h in extreme

cases. Cloacal swabs were taken from birds that did not defecate

in boxes, by swirling a sterile swab in the cloaca. Swabs were

stored in virus transport medium (Hanks’ balanced salt solution

containing 0.5% lactalbumin, 10% glycerol, 200 U ml21 penicillin,

200 mg ml21 streptomycin, 100 U ml21 polymyxin B sulfate,

250 mg ml21 gentamycin and 50 U ml21 nystatin; Sigma) at

2708C within 1–4 h of collection.

(b) Virus detection, isolation and characterization
Methods for screening, isolation and subtyping of samples can be

found in previous publications [9]. Briefly, RNA from cloacal

and faecal samples was extracted with two different automated

systems, either the M48 robot (Qiagen, Germantown, MD, USA)

(for the years 2006–2009), or the MagNA Pure 96 Extraction

robot (Roche Diagnostics GmbH, Roche Applied Science,

Mannheim, Germany) for samples collected in 2010. Samples

were screened by real-time reverse transcriptase polymerase

chain reaction (RRT-PCR) assays targeting the IAV matrix gene

using either LightCycler 1.5 (Roche) or StepOnePlus instrument

(Applied BioSystems, NJ, USA) (see electronic supplementary

material, table S1 and [9] for a summary). H5- and H7-specific

RRT-PCRs were run for IAV matrix-gene positive samples, and

the cleavage site of the HA was sequenced for H5 or H7 positive

samples to screen for potential HPAI viruses, according to EC

recommendations. Specific pathogen-free embryonated chicken

eggs were inoculated according to standard methods for IAV

propagation. A haemagglutination inhibition (HI) assay was

used to characterize the HA subtype from isolates, while the NA

subtype was obtained by partial sequencing of the NA gene, or

by a SYBR-green-based RRT-PCR screening method for the

Eurasian N3–N8 NA lineages [22]. New primers were designed

for the N1, N2 and N9 subtypes owing to poor performance

(electronic supplementary material, table S2, [20]).

(c) Seasonal trends in influenza A virus prevalence
and migration

The R software [23] was used to compute all statistical tests and

models. The sampling period was divided into weeks to depict

migration intensity and IAV prevalence. All collected samples

were included in the prevalence analyses, including data from

recaptured individuals. Smoothed curves depicting seasonal

variation in trapping and prevalence were obtained fitting trap-

ping data and IAV matrix RRT-PCR results, respectively, using

general additive models (GAMs) with the mgcv package, and

including spline functions of week. Three models were con-

sidered: one where distinct spline functions were included for

each year and where consequently a seasonal pattern was

allowed to differ among years; a second model including a

single spline under the assumption that the seasonal pattern

was similar in all years; finally, in a third model, the pattern

was considered constant over the season. In addition, all three

models included a fixed effect of year as a categorical variable

to account for inter-annual variation for each year separately,

and for the seasonal trend smooth curve fitted to the data

pooled over all years. An analysis of deviance (ANODEV) stat-

istic was computed from the three models mentioned above to

assess the proportion of seasonal variation in trapping and IAV

prevalence that was accounted for the common pattern across

years. The ANODEV statistic is thus an indicator of the consistency

of seasonal patterns across years.
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Immigration and site usage patterns of mallards were also

characterized. First, the average number of newly ringed ducks

per week was determined. The proportion of newly ringed

birds (i.e. at first capture) among all captures was calculated

per week, and smooth functions were fitted for each year, and

for all years combined using GAMs as described earlier.

Second, the time between the first and the last capture of individ-

ual mallards within season (i.e. in the same autumn, August–

December) was used to approximate the time that mallards

used the stopover site. This term, ‘length of stay’, was log-

transformed to achieve normality and to test differences in

mean values among years using ANOVA.
Proc.R.Soc.B
281:20140098
(d) Temporal haemagglutinin diversity
Putative seasonal effects on HA subtype diversity were investi-

gated using vector generalized linear models (VGLMs) [24],

within the vgam package in R [24]. VGLMs are generalized

linear models dealing with polytomous responses. The response

variable was the proportion of a specific subtype k (Prk) in

infected individuals which could have k categorical outcomes.
Owing to the high diversity of HA subtypes, we grouped all

the HA subtypes detected into three classes based on their phy-

logeny [4]. The H1 class included the H1 clade (comprising the

H1, H2, H5 and H6 subtypes) and the H9 clade (H8, H9 and

H12 subtypes), the H3 class included the H3 clade and the H7

clade (basically the subtypes that belong to HA group 2: H3,

H4, H10 and H7), and finally the H11 class included the H11

subtype [20]. This grouping allowed investigation of dynamics

between major HA antigenic classes. At the same time it reduced

the number of outcomes, preventing convergence problems. To

further reduce convergence problems, seasonal variation was

depicted using two week long time intervals and was included

in the model as a continuous explanatory variable starting at 1

August of each year, as data were sparse in spring and

summer months. The seasonal trend was modelled as a first-

order polynomial. The modelling approach aimed to test

whether there was: (i) a common seasonal variation of each of

the HA classes between years, (ii) a difference in amplitude

between years despite common seasonal variation of each HA

class or (iii) no common pattern across years. The model with

best fit to the data was selected using the Akaike information

criterion corrected (AICc) for small sample sizes [25]; we con-

sidered models as having equivalent support for the data when

the difference in their AICc values was less than 2. In this case,

we followed the principle of parsimony [25] and retained the

model with the least number of parameters. Details on model

building can be found in the electronic supplementary material,

methods S1 and table S4.
(e) Haemagglutinin and neuraminidase linkage
To evaluate the linkage between HA and NAvariants, a contingency

table with fully typed virus isolates, including only one isolate per

infection for each individual bird, was tested for independence

with the Fisher’s exact test (implemented in the ‘fisher.test’ function

of R) [26,27]. As the resulting table was large (12 � 9), the test algor-

ithm was computationally intractable. The p-value for the null

hypothesis was instead determined using a Monte Carlo approach

(option ‘simulate.p.value¼ TRUE’ in the R fisher.test function). To

examine the specific patterns of departure from independence, the

standardized Pearson’s residuals were used (electronic supplemen-

tary material, methods S2). In this analysis, positive residuals reflect

an overrepresentation of observed cases compared with the number

of expected cases under the assumption of independence between

HA and NA combinations. Reciprocally, negative residuals reflect

an underrepresentation of some combinations compared with the

expected frequency.
3. Results
(a) Mallard migration and seasonal variation

in influenza A virus prevalence
Trapping of mallards showed a distinct seasonal pattern that

accounted for 44% of the overall seasonal deviation in trapping

numbers among years (figure 1a). The daily number of trapped

birds was correlated with the number of staging mallards in

the reserve (Spearman rank correlation, R ¼ 0.526, p , 0.001,

n ¼ 102), meaning that trapping numbers could be used as a

proxy for migration phenology. At the onset of spring (weeks

10–12), most birds were trapped for the first time, but the

proportion of newly ringed individuals decreased with the pro-

gress of spring. During the breeding season (weeks 22–30),

when relatively few birds were captured, the proportion of

new birds was large, probably reflecting recruitment in the

local population. The proportion of newly ringed individuals

during autumn migration had a bimodal shape, with an initial

influx of birds in August (weeks 31–34), and a secondary, larger

influx in October–November (weeks 40–44, figure 1a).

In autumn, the average estimated length of stay ranged from

8.1 to 17.8 days in different years (ANOVA, F8, 2804 ¼ 20.53,

p , 0.001). In individual years, the timing of autumn migration

differed, and subsequently the timing of the IAV peak pre-

valence (see below, and electronic supplementary material,

figure S1). For instance, in the autumns of 2002–2005 and

2007, arrival of ducks was fairly constant, measured as

number of birds captured for the first time per week. Other

years with very mild climatic conditions during late autumn,

such as 2006 and 2008–2010, migration was delayed. In such

years, trapping data were dominated by a high amplitude

peak in late autumn with many birds arriving within a short

period. In December (weeks 48–50), trapping numbers went

down, but the site continued to harbour ducks (figure 1a).

The smoothed curve depicting the variation in IAV preva-

lence across years showed a strong seasonal pattern (figure 1b).

The smooth curve was fitted to the data pooled over years

based on RRT-PCR results (22 229 samples with a total IAV

prevalence of 16.49% across 8529 individuals (electronic

supplementary material, table S3)) and accounted for 48% of

the total temporal variation in IAV prevalence. IAV prevalence

was low during spring migration and the breeding season, but

showed a marked increase in August (weeks 31–34) and later

in October–November (weeks 41–46, figure 1b), coinciding

with an increase of immigrating mallards (figure 1a). Similar to

the temporal pattern of bird immigration, IAV prevalence

showed a distinct bimodal pattern in autumn, with one

prevalence peak in August and a second peak spanning October

and November (weeks 40–44, figure 1b). In late autumn

and early winter, the prevalence dropped to 10%, but still

remained elevated compared with the spring, when the levels

were lower than 5%. Although the common seasonal pattern

accounted for a considerable fraction of the total seasonal vari-

ation across years, there was also variation in the prevalence

levels and timing of IAV peaks for individual years (electronic

supplementary material, figure S1).

(b) Influenza A virus diversity and temporal variation
of subtypes

A total of 1081 viruses were isolated from 2451 RRT-PCR

positive samples (44% isolation success) and subtyped,
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Figure 1. Seasonal variation in (a) trapping of mallards and (b) IAV prevalence 2002 – 2010. In (a) the y-axis depicts the average number of newly trapped birds, and
data are presented as bar plots with error bars. The secondary y-axis shows the variation of newly trapped birds compared with total for all years with 95% CI. The circles
show the raw estimates for influx computed on data pooled across years, stratified by week. In (b), the y-axis gives the seasonal variation in prevalence, where the raw
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representing the majority of HA (H1–H12), and all NA

(N1–N9) variants in a total of 74 HA/NA combinations

(table 1). All viruses, including the H5 and H7 viruses were

low-pathogenic, LPAI. The majority of isolates were from the

autumn migration period, with only 19 isolates retrieved from

samples taken during spring or early summer. However, these

few isolates represented at least 10 different HA/NA subtypes:

H2N3, H2N5, H3N8, H4N6, H7N4, H8N4, H10N4, H10N5,

H10N7 and H10N8.

The six most common subtypes were H4N6, H1N1, H2N3,

H5N2, H6N2 and H11N9, respectively, which together

accounted for 46.9% of all isolated viruses. The number of

subtype combinations per year varied from 18 to 30. The

HA subtypes H1–H6 and H11 were isolated each year,

while H7–H10 and H12 were isolated in only some years

(figure 2). The two rarest HA subtypes were H9 and H12,

and were only found in 6 out of the 9 years of the study.

The H7 viruses were common in autumn 2002 and 2003

and isolated also in 2004–2005 and 2007, although H7s

remained virtually absent in the last years of the time series
(figure 2). In contrast, H5 viruses were common in the

mallard population (figure 2).

Some subtype combinations detected in specific years had

patterns suggesting outbreaks and clonal expansion of particu-

lar subtypes. These occurrences were typically manifested as

high isolation frequencies in short periods of time. For instance,

repeated isolation of H1N1 late in November 2004 and 2006,

H6N2 in November 2003 and September 2006 and H2N3 in

November 2008 (figure 2). By contrast, the H4N6 subtype

was found in high numbers during the entire study period.

Some subtypes consistently occurred early in the season,

such as H3N8, compared with others that appeared at the

end of the season such as H11; in general subtype presence

was seasonal, whereby the same combination was not isolated

continuously. Common HA/NA subtype combinations could

be isolated for periods of three to five weeks during the

autumn (figure 2). Deviation from this pattern occurred in

years with delayed migration and arrival of birds, such as

2008, resulting in a peak of prevalence and IAV diversity

concentrated in a few weeks in November (weeks 44–48).



Table 1. Distribution of IAV subtypes combinations (total number of isolates) in mallards sampled at Ottenby Bird Observatory, in 2002 – 2009. The most
common subtype combinations (more than 20 isolates) are shown in bold.

haemagglutinin

neuraminidase

N1 N2 N3 N4 N5 N6 N7 N8 N9 unknown total

H1 94 6 5 1 4 1 30 141

H2 6 5 58 2 1 1 6 7 10 96

H3 2 14 2 1 1 13 32 9 74

H4 6 35 5 1 5 198 1 2 1 37 291

H5 1 53 27 1 8 9 99

H6 9 53 6 2 14 3 8 1 9 105

H7 2 1 1 3 32 1 1 41

H8 1 1 12 5 19

H9 1 5 1 2 9

H10 4 2 8 4 4 5 3 7 26 63

H11 3 36 7 1 3 2 1 51 14 118

H12 1 6 3 4 14

unknown 2 3 2 1 1 1 1 11

total 125 217 116 26 35 231 41 54 80 156 1081

H4

H3

H10
H7
H11

H6
H1

H2

H5
H12

H8
H9

N7

N6

N9

N3

N2

N4

N1

N8

N5

44 44 48 23 27 36 35 35 35

3530252015
isolates

1051

31 31 3140 40 40 40 4044 44 44 44 44 4436 3648 4848 48403631272248
2002 2003 2004 2005

weeks
year

2006 2007 2008 2009

Figure 2. Temporal diversity of HA and NA (years 2002 – 2009). Filled boxes show the number of virus isolates within a two week period, where a topographic
colour scale was used to indicate subtype abundance, with increasing numbers of isolates depicted as green and blue in the scale. The y-axis indicates the subtypes,
the dendrogram shows subtype phylogenetic relatedness and thicker coloured branches indicate the HA classes. The H1 class is represented in red, the H3 class in
black and the H11 class in green. Long periods of time without retrieved isolates were not included and are indicated with diagonal lines on the temporal x-axis to
indicate discontinuous time.
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A modelling approach was used to determine specific

patterns of diversity between years and within season by

grouping HA subtypes (n ¼ 1070) into three classes based

on their phylogenetic relationships. The model with strongest
statistical support (AICc ¼ 1958:07; DAICc� 2) showed a

robust year effect, with seasonal trends that included the

interaction between year and season (electronic supplemen-

tary material, table S4). The visualization of the model
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(figure 3) suggests emergence of H3 class viruses earlier in

autumn (weeks 20–35, subtypes in group 2: H3, H4, H7

and H10) compared with later emergence of H1 class viruses

(H1 clade: H1, H2, H5 and H6; and H9 clade: H8, H9 and

H12) and the H11 subtype.

(c) Haemagglutinin and neuraminidase linkage
The observed frequencies of HA/NA subtype combina-

tions were significantly different from expected frequencies

(Fisher exact test with Monte Carlo simulated p-value, 12 � 9

contingency table, n ¼ 805, p , 0.001), indicating dependence

between specific HA and NA variants. The standardized Pear-

son’s residuals showed that H1N1, H11N9, H10N4, H12N5,

H2N3, H3N8, H4N6, H5N2, H6N2 and H7N7 were isolated

more often than their respective HA and NA abundances

would indicate. Other subtypes, including H4N1, H1N2,

H4N3, H1N6 and H6N6, among others, were isolated less

frequently than expected (electronic supplementary material,

table S5).
4. Discussion
(a) Seasonal variation in influenza A virus prevalence

and host migratory behaviour
Seasonal environmental changes are a driving force for peri-

odic life cycle events in many organisms, influencing timing

of reproduction, migration and many other behaviours [28].

The regularity in these events also impacts host–pathogen

interactions [28] and has consequences for spatial–temporal

variations in incidence and prevalence of pathogens.

Consequently, it is essential to determine factors and processes

in the ecology of the host species that may influence pathogen

perpetuation [29–31]. The main reservoir hosts for IAV in the

Northern Hemisphere are waterfowl, gulls and shorebirds, of

which most species are migratory and hence should induce

spatial and temporal variation in IAV transmission and persist-

ence factors. Long-term datasets on IAV in wild birds are
restricted to a few sites in Europe and North America

[8,10,13–15,17,32,33], and only recently emerged in other

areas, such as Africa and Australia [6,34,35]. Using trapping

and virology data collected from a single site across 9 years,

we show that, although there is a considerable interannual

variation in IAV prevalence in mallards during migration,

there were still trends correlated to host ecology, and possibly

to immune processes at individual and population scales.

IAV prevalence and migration intensity were associated in

late autumn, when the second IAV prevalence peak coincided

with a period during which many mallards arrived at the

study site. In summer, the influx probably consisted of local

recruitment and not migrants. During spring migration IAV

prevalence was low, but possibly sufficient to maintain

IAV circulation in the reservoir host. Spring migration in this

species is faster than autumn migration [36], as the ducks are

heading towards breeding areas. This was reflected in the low

numbers of ducks trapped during the spring period and the

highest trapping intensity in the end of May (week 22). The

dataset from the autumn period was much larger, and

depicted a strong seasonal pattern with pronounced IAV

peaks in August and October–November, the second one

corresponding to a main peak in mallard migration.

(b) What is governing the seasonal trends in influenza
A virus prevalence and subtype predominance?

The factors driving seasonal trends in IAV prevalence and sub-

type diversity are not fully characterized. One hypothesis is

that the temporal variation is driven primarily through host

population immunity. Population immunity drives the

dynamics of different human pathogens [37,38], including

replacement of influenza strains in the human population

[39]. Similarly in mallards, the development of population

immunity could explain changes in the IAV viral population.

At present, little knowledge is available on how IAV variation

at the individual or population levels is related to host immune

functions. Experimental infections have shown that a primary

infection can give protection against infections with the same
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strain (homosubtypic immunity) [40,41]. In addition, the devel-

opment of partial protection against other strains, defined as

heterosubtypic or cross-protective immunity, may also occur

[40,42–45]. This seems to be true for sentinel mallards in

nature [46]. Recently, we showed that this study population

develops homo- and heterosubtypic immunity from natural

infections [20], and that the heterosubtypic immunity at the

HA clade level persists for at least a month. This cross-

protective immunity could affect the dynamics of virus

transmission in the population (i.e. changes in infection prob-

abilities and in subtype fitness as the proportion of resistant

hosts against a particular subtype/s increases over time), the

circulation of certain virus subtypes [20] and probable patterns

of reassortment [47]. The degree of immunity to IAV is prob-

ably related to exposure, and under the assumption that all

birds have an equal exposure to viruses, population immunity

should increase with seasonal progression, and be higher in

adult birds than in juvenile birds.

Interestingly, the two peaks in IAV prevalence in autumn

tended to be dominated by different virus subtypes. At the HA

diversity level, there was a year effect and a seasonal trend

with the interaction of year and season. The modelling suggested

an interplay or a succession pattern between the different HA

classes. The two major classes, the H1 class (H1 and H9 clades)

and the H3 class (HA group 2) appeared to have different

trends, where the proportion of H3 class viruses in infected indi-

viduals was higher in the early autumn compared with the H1

and H11 classes which in turn appeared in late autumn.

Another hypothesis is that seasonal trends are caused by

different populations of mallards, each having different viral

populations, migrating through an area with different phenol-

ogy. As a consequence, temporal variation could arise due to

continuous seeding and import of viruses to staging birds

[18,29,31]. The success of these introductions at the site could,

in turn, depend on population immunity. At our study site,

there is temporal succession in the arrival of mallards from

different breeding areas, where early autumn migration is

dominated by birds from the Baltic states and Finland, which

are gradually replaced with birds originating in northwestern

Russia [9,18]. Through repeated recaptures of individuals we

know that there is ongoing virus transmission at our study site

[20], and it is probable that the baited trap used for catching

the birds may amplify transmission [48].

Further, timing of mallard migration coincides with the

migrations of many other bird species, some of which may

also be hosts for the virus. Thus, coexistence of different

hosts at the stopover site may affect transmission frequency

and subtype circulation. For instance, the first peak of IAV

prevalence in mallards in autumn coincides with the main

migration period of terns, gulls and waders from the Siberian

taiga and tundra. During the later IAV prevalence peak in

mallards, the area also harbours several thousand geese:

mainly barnacle geese Branta leucopsis and brent geese Branta
bernicla. Other Anas species, including Eurasian teal A. crecca,

northern shoveller A. clypeata, Eurasian wigeon A. penelope
and northern pintail A. acuta, have slightly different migration

phenologies compared with mallards, which could potentially

affect IAV prevalence and transmission in the system [49].
(c) Subtype diversity maintenance and distribution
Over the total study period, HA subtypes from H1 to H12 and

all NA subtypes were isolated from mallards, representing 74
different HA/NA combinations. Most HA and NA subtypes

were found each year, but the number of different combi-

nations varied between 18 and 30. The H1 and H6 subtypes

were the dominant HA subtypes throughout the study

period. Subtype diversity levels were comparable between

years, even if within-season diversity varied depending on

the timing of migration. Overall, our study site at Ottenby

harbours the highest IAV subtype diversity reported to date

for a single site. The Genbank database records report a total

of 102 subtype combinations isolated from Anseriformes.

Most large-scale IAV studies conducted show seasonal patterns

in prevalence levels and large subtype diversity in IAV collec-

tions from ducks, regardless of locations in North America, in

Europe, or elsewhere [7–11,13,16,17,32–33].

Some subtypes, such as H4 and H6, are abundant globally

and distributed in both the Eurasian and the North American

continents, while others tend to be rarely detected (e.g. H8 or

H7 subtype), or are variable in their abundance between years,

or studies (e.g. H10 and H12 subtypes) [13,14]. An enigma in

the IAV system is how subtype diversity is maintained,

especially for rare subtypes that would be sensitive to stochastic

events. Balancing selection could favour rare variants, but at the

same time rare variants are more prone to be affected by bottle-

neck effects, for instance in winter when prevalence is low and

population immunity may be highest. Sharp et al. [14] described

prevalence of some subtypes in Canada as either consistent or

sporadic, while some other subtypes followed a 3 year cycle:

peak the first year, decrease the second year and decrease

more dramatically the third year. Clear cyclic patterns were

not observed at Ottenby; however H7, H8, H9 and H12 were

found at low prevalence and were absent some years of the

study. A low prevalence could increase randomness of detection

probabilities, but could also indicate that these viruses are main-

tained in other host species and are transmitted to the mallards

when different bird species come in contact during migration or

wintering. Interestingly, the H7 subtype was commonly isolated

in 2002 and 2003 [50], but has remained rare in our series since

then. H7 viruses have been detected in other countries in

Europe during the study period, including outbreaks of HPAI.

Apart from H7 viruses, we also isolated the notifiable LPAI sub-

types H5 and H9, which pose risks of transmission into poultry

[3]. However, no HPAI viruses were detected at the site, includ-

ing HPAI H5N1, which circulated in wild birds and poultry in

Europe in 2005–2006. This suggests that HPAI viruses are not

maintained in wild waterfowl populations in Europe.

Additionally, specific HA subtypes were mainly associ-

ated with certain NA combinations, such as H4N6 and

H6N2. This suggests advantageous linkage between particu-

lar HA and NA, and possibly the existence of particularly

fit waterfowl viruses as HA and NA could have coevol-

ved resulting in more stable genome constellations, while

rarer combinations may be more adapted to other hosts.

Co-infections are probably common in the mallard popu-

lation [11,12,51] owing to the high prevalence and diversity,

and therefore new gene constellations are expected to arise

from reassortment. If all the different HA and NA were

functionally exchangeable, and could randomly be associated

in different combinations without a fitness consequence,

one would expect a relatively high number of reassortants

between common HA/NA subtypes. However, the H1N1

and H4N6 subtypes are both common and co-circulate,

while H1N4 or H4N1 reassortants were rare. One explanation

could be that some reassortants have lower fitness, although



rspb.royalsocietypublishing.org
Pro

8
a recent study showed that natural reassortants may have

similar fitness levels when contrasting viral load, duration

of shedding and survival in the environment [52].

The present long-term study gives new insights into the

diversity dynamics at a stopover site and represents a step for-

ward in understanding IAV epidemiology in one of the major

reservoir hosts for avian influenza. Further phylogenetic analy-

sis on isolates across years could shed light on the evolutionary

dynamics of subtypes, lineages and the impact of reassortment

events in IAV viral population dynamics.
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